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Abstract

In the realm of computer graphics, three dimensional scenes are created by de-
scribing geometric objects with vertices and specifying vectors that determine how a
camera is to view the scene. Traditionally, these vertices and vectors have been manip-
ulated using matrix operations. Once introduced to the mathematical concepts behind
quaternions, the reader will be able to recognize advantages they have over Euler angle
representation in describing rotations.

1 Introduction

Programming computer graphics requires a good grasp of mathematics. A background in
linear algebra is crucial to understanding modern 3D computer graphics. Historically, com-
puter graphics systems such as DirectX and OpenGL have been based on schemes utilizing
Euler angles to perform rotation-related calculations. Euler angles assign one angle to each
of three orthogonal axes of a coordinate system in three dimensional space. Any orientation
can be described by a combination of these three angles. However, systems based on Euler
angles have a few problems that have prompted programmers to look to other sources for
solutions.

Although not as well known as Euler angles, quaternions provide a mathematical frame-
work for handling rotation-related calculations. A quaternion is a four-dimensional vector
with certain operations defined. The quaternion is a mathematical object that has strong ties
to rotations in three dimensions. This property is being exploited in a variety of applications
in the field of computer graphics.

2 Historical Context

The discovery of quaternions is attributed to Sir William Rowan Hamilton. Hamilton had
been searching for a way to extend complex numbers in a way that would be applicable to
three dimensions. At first, he thought that adding another imaginary dimension to complex
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Figure 1: Broome Bridge plaque honoring Hamilton’s discovery

numbers would be sufficient. However, he was unable to come up with an algebraic system
with one real part and two imaginary parts in which division made sense.

On October 16, 1843, while walking with his wife past the Broome Bridge, Hamilton
made a breakthrough in his quest for extending complex numbers with the concept of a
system that contained one real and three imaginary parts. In the following excerpt from a
letter to his son, Hamilton describes the moment of inspiration [2].

“ . . . it is not too much to say that I felt at once the importance. An electric
circuit seemed to close; and a spark flashed forth, the herald of many long years to
come of definitely directed thought and work, by myself if spared, and at all events
on the part of others, if I should even be allowed to live long enough distinctly
to communicate the discovery. Nor could I resist the impulse – unphilosophical
as it may have been – to cut with a knife on a stone of Brougham Bridge, as we
passed it, the fundamental formula with the symbols, i, j, k; namely,

i2 = j2 = k2 = ijk = −1

which contains the Solution to the Problem . . . ”

Hamilton’s excitement at the discovery prompted him to carve the critical equation into
a nearby bridge as insurance against the possibility that he might die before he told someone
else of his breakthrough. A plaque is now located at Broome Bridge in Dublin to commem-
orate the event.
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3 Quaternions

3.1 A Complex Connection

Since quaternions were discovered by seeking an extension to complex numbers, it is not
surprising that multiple connections exist between the two. The most significant connection
comes from the fact that they are both division algebras. A division algebra is a ring in
which every nonzero element has a multiplicative inverse, but multiplication is not neces-
sarily commutative [5]. Complex numbers and quaternions are two of only four division
algebras that preserve the Euclidean norm. The other two are real numbers and octonians,
an eight-component extension of quaternions. The multiplication rule for quaternions con-
tains three subrules that parallel ordinary complex multiplication. Just as rotations in two
dimensions can be represented using complex multiplication, rotations in three dimensions
can be represented using quaternion multiplication. When unit complex numbers, those
whose magnitude is one, are multiplied, the result is a unit complex number. Likewise, mul-
tiplication of unit quaternions results in a unit quaternion. This fact becomes useful when
interpolating between orientations - a common problem faced by graphics programmers.

3.2 Notation, Definition of Operations, and Properties

Quaternions have four components, one real and three imaginary. They can be written as a
sum of these components

q = q0 + iq1 + jq2 + kq3

or as four-dimensional vectors

q = (q0, q1, q2, q3) = (q0, ~q).

The notation indicating that the last three components can be interpreted as a vector is
intentional, and its significance in relation to rotations will be explained later.

The dot product of two quaternions is similar to that of three-dimensional vectors, except
with an added dimension.

p · q = (p0, p1, p2, p3) · (q0, q1, q2, q3)

= p0q0 + p1q1 + p2q2 + p3q3

= p0q0 + ~p · ~q

Quaternion addition is performed component-wise.

p + q = (p0, p1, p2, p3) + (q0, q1, q2, q3)

= (p0 + q0, p1 + q1, p2 + q2, p3 + q3)

= (p0 + q0, ~p + ~q)
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Quaternion multiplication, denoted by the ? operator, is the key to performing rotations. It
is the operation we will be primarily concerned with for the remainder of this paper. The
rule for multiplying quaternions is given below.

p ? q = (p0, p1, p2, p3) ? (q0, q1, q2, q3)

=


p0q0 − p1q1 − p2q2 − p3q3

p1q0 + p0q1 + p2q3 − p3q2

p2q0 + p0q2 + p3q1 − p1q3

p3q0 + p0q3 + p1q2 − p2q1


= (p0q0 − p · q, p0q + q0p + p × q)

Similar to the conjugate of a complex number, the conjugate of a quaternion is defined
as

q̄ = (q0,−q1,−q2,−q3) = (q0,−~q),

and was constructed so that q ? q̄ = (q · q, 0, 0, 0). The inverse of a quaternion is defined as

q−1 =
(q0,−q1,−q2,−q3)

q2
0 + q2

1 + q2
2 + q2

3

=
q̄

|q|2
,

and was constructed so that qq−1 = q−1q = (1, 0, 0, 0) [3]. Notice that the inverse is just the
conjugate in the unit-length case. When dealing with rotation, restricting the quaternions
to unit length simplifies some calculations. Unit length quaternions obey the following
restriction:

q · q = (q0)
2 + (q1)

2 + (q2)
2 + (q3)

2

= (q0)
2 + ~q · ~q = 1.

This equation also describes the three-sphere, a four-dimensional object denoted by S3. The
three-sphere consists of all the points located distance one away from a fixed point in four-
dimensional Euclidean space [6].

The multiplication rule can also be written in matrix form.

p ? q = P · Q

=


p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0

 ·


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0


= (p0q0 − p · q, p0q + q0p + p × q) (1)

Now we have the tools to confirm that quaternion multiplication preserves membership in
S3. Suppose p · p = 1 and q · q = 1, then

(p ? q) · (p ? q) = qTPTPq = qT q = q · q = 1.
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4 Euler Angles

4.1 Computer Graphics Overview

Computer graphics allow virtual three-dimensional worlds to be described and rendered to
a two-dimensional screen. Objects in the virtual world are made up of polygons which
are defined by a collection of vertices. These three-dimensional objects, or meshes, are
manipulated by performing vector operations on each of the vertices that make up the mesh.
Basic manipulations include the transformations of scaling, translation, and rotation.

Scenes are rendered to the screen based on the position and orientation of a virtual
camera. The camera position and orientation is described using three vectors. The eye
vector represents a translation from the origin of the world; it describes the point in space
where the camera is looking from. The other two vectors are referred to as the look-at
and up vectors; these help describe the orientation of the camera. The third vector needed
for a complete orientation frame, the right vector, can be calculated as the cross product
of the look-at and up vectors. An orientation frame is a set of three orthogonal axes that
contain all the information needed to describe an orientation in three dimensions. When
associated with the camera, interpolating between orientation frames can produce smooth
camera movement. Orientation frames can also be associated with meshes, or subsets of
meshes, to perform animation.

4.2 Matrix Transformations

The meshes and camera that describe a virtual scene are manipulated using matrix multi-
plication. A 4x4 transformation matrix T is constructed as follows and multiplied by each
vector the programmer wishes to transform.

T =

[
R t
sT u

]
The R entry represents a 3x3 matrix containing information about rotation. The sT and
t entries correspond to 1x3 and 3x1 vectors related to scaling and translation, respectively.
Multiplying such a matrix by a vector produces the desired transformed vector.

Euler angles represent rotations by assigning one angle to each of three orthogonal axes
of a coordinate system in three-dimensional space. Euler angles can be used to construct
matrices that, when multiplied by a vector, rotate the vector around each of the given axes.
Matrices Rx, Ry, and Rz rotate a vector α, β, and γ degrees about the x, y, and z axes,
respectively.

Rx(α) =

1 0 0
0 cos(α) sin(α)
0 −sin(α) cos(α)

 Ry(β) =

 cos(β) 0 sin(β)
0 1 0

−sin(β) 0 cos(β)

 Rz(γ) =

 cos(γ) sin(γ) 0
−sin(γ) cos(γ) 0

0 0 1


All three axis-rotation matrices can be combined into a single rotation matrix R, which looks
to be computationally intense.

R(α, β, γ) =

cos(β)cos(γ) −cos(α)sin(γ) − sin(α)sin(β)cos(γ) sin(α)sin(γ) − cos(α)sin(β)cos(γ)
cos(β)sin(γ) cos(α)cos(γ) − sin(α)sin(β)sin(γ) −sin(α)cos(γ) − cos(α)sin(β)sin(γ)

sin(β) sin(α)cos(β) cos(α)cos(β)
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4.3 Multiple Representation

Although Euler angles are the traditional way to represent rotations in computer graphics,
they cause a few problems. One problem occurs because a single orientation can be repre-
sented in multiple ways. An example will help illustrate how multiple representations can
occur.

Imagine a book lying on a table so that if it were opened, it could be read by a person
sitting at the table. Call this the ’home’ orientation of the book. Assign a coordinate system
so that the origin is at the center of the book. The x-axis passes left to right through the
book, the y-axis is normal to the table and passes up and down through the book, and the
z-axis is parallel to the spine of the book. If the book were rotated 180◦ about the z-axis, it
would appear that the book had been read and closed. Call this the ’finish’ orientation of
the book.

Besides the z-axis rotation, there is another combination of rotations that produce the
same result. Beginning at the ’home’ position, rotate the book 180◦ about the y-axis. Now,
rotate it 180◦ about the x-axis. The book is now in the ’finish’ position, without rotating
about the z-axis! The composition of rotations about two perpendicular axes can result in an
orientation equivalent to a rotation about a third axis. Taking into consideration the fact that
a 180◦ rotation can be achieved whether the book is rotated clockwise or counterclockwise in
each step, there are six Euler angle representations that produce the same rotation. Stated
in the form of the composite rotation matrix,

R(0, 0, 180) = R(0, 0,−180) = R(180, 180, 0) =
R(180,−180, 0) = R(−180, 180, 0) = R(−180,−180, 0)

This ’over-representation’ of rotations indicates that the Euler angle representation contains
excess information. Converting an orientation to Euler angles can be ambiguous since there
may be more than one option.

4.4 Gimbal Lock and Singularities

Another problem that occurs when using Euler angles is the possibility of mathematical
singularities. This problem has a physical analog called gimbal lock. Understanding gimbal
lock, which is easy to visualize, should help explain mathematical singularities.

A simplified drawing of a guidance system taken from the NASA Apollo 15 Flight Jour-
nal, Figure 2 illustrates the problem of gimbal lock [8]. The central rectangle depicts a
gyroscopically-stabilized platform. A spinning gyroscope resists changes in orientation be-
cause of its rotational inertia. The outer frame represents the spaceship, which is free to
rotate around any of the axes labeled 1 through 3. The rings which spin on the axes are
called gimbals.

By default, the apparatus is oriented as in part a. Rotating 90◦ about axis 2 causes axes
1 and 3 to line up, as shown in part b. This effectively removes a degree of freedom from the
system. The frame can no longer freely rotate about the original axis 1. From this position,
if a torque acts in the direction around the original axis 1, as shown in part c, the central
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Figure 2: Demonstrating Gimbal Lock

platform is forced to move. If the system uses only one gyroscope, the gyroscope will quickly
pitch 90◦ to conserve rotational momentum. When this happens, the guidance system will
think the ship has just pitched 90◦ and tell the control system to fire thrusters to realign
the ship, sending it in the wrong direction. If the system has multiple gyroscopes pointing
in different directions, the resulting forces on the system act against each other and could
cause the guidance system to self-destruct [2].

When smoothly changing between orientations using Euler angles, we encounter a similar
problem. If the three rotation matrices related to Euler angles (Rx(α), Ry(β), and Rz(γ))
are expressed in terms of three quaternion rotations, and the result is graphed for fixed
values of β, we see a two-dimensional surface described by the parameters α and γ [2]. As
β approaches 90◦, the two-dimensional surface becomes a one-dimensional ring. Trying to
describe a one-dimensional circle with two parameters results in problems similar to those
caused by gimbal lock.

5 Quaternion Rotation

A rotation can be described with an angle of rotation and an axis about which rotation
occurs. This idea is referred to as axis-angle representation and is embedded in quaternions.
This kind of representation is free from the difficulties of multiple representation and gimbal
lock that plague Euler angles.

Vectors can be multiplied by quaternions to produce rotations. To accommodate the
four-dimensional nature of quaternions, a three-dimensional vector is cast as a quaternion.
The real part of a vector written as a quaternion is zero. The three imaginary parts of
the quaternion correspond to the three components of the vector. To summarize, a vector
~v = (v0, v1, v2) can be written as a quaternion of the form q = (0, v0, v1, v2).

A quaternion that rotates a quaternion-cast vector θ degrees about the normalized vector
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Figure 3: Axis-Angle Rotation Representation

n = (n0, n1, n2) is given by

q = (cos(
θ

2
), nxsin(

θ

2
), nysin(

θ

2
), nzsin(

θ

2
)) [4].

When a vector is multiplied by a single non-zero quaternion, the result is not a vector because
its real component is not zero. However, we can make the real part zero by multiplying again
by the original quaternion’s inverse [7]. To obtain a transformed vector ~v′ from a vector ~v
and a rotation quaternion q, multiply like this:

~v′ = q ? ~v ? q−1

If unit quaternions are used, the above equation is equivalent to v′ = q ?v ? q̄. This conjugate
shortcut is used in practice to improve efficiency. The multiplication by two quaternions
explains the denominator of the θ

2
parameter in the rotation quaternion definition. Since

each multiplication rotates the vector ~v half of θ, two multiplications rotate ~v through the
entire angle.

5.1 Evaluation of Efficiency

Lack of gimbal lock and multiple representation are not the only advantages quaternions
have over Euler angles. When it comes to storing a representation of an orientation frame
in computer memory, quaternions require less space than the 3x3 matrix required for Euler
angles. Only four floating point numbers are needed to store a quaternion, compared to
the nine floating point numbers required for a 3x3 matrix. From a computer science point
of view, the advantages fall into a few different categories. A smaller space requirement in
memory and on hard disk, and faster network transmission time are some of the specific
benefits. These advantages become more pronounced when large numbers of rotations are
being handled.

Measuring the number of arithmetic operations involved in common vector operations
serves as a basis for comparing the computational complexity of systems based on quaternions
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and Euler angles. With a comparison of computational complexity, programmers can glean
an idea of how quaternion-based computer systems should be arranged. The following tables
list the number of additions and multiplications required for common rotation operations.

Rotate n Vectors
Additions Multiplications

With rotation matrix 6n 9n
With quaternion 12 + 6n 12 + 9n

Compose Two Rotations
Additions Multiplications

Rotation matrix 18 27
Quaternion 12 16

The two main systems available for graphics programming, OpenGL and DirectX, inherently
use matrix operations to transform vertices. Before quaternions can be used in practice by
these systems, they must be converted to a matrix. The additional 12 multiplications and
divisions required for rotating vectors exists because of this required conversion.

Interestingly, the only place where quaternion operations are more efficient than standard
matrix operations is in the composition of multiple rotation operations [2]. Programmers
should note that using quaternions to compose rotations leads to a savings in computational
complexity and time, but the result should be converted back to matrix representation before
doing other vector operations.

6 Conclusion

An intuitive, albeit somewhat obscure, way to describe rotations, quaternions are becoming
more commonplace in computer graphics systems as awareness about them spreads. As
recently as 2002, even professional 3D graphics tools like Maya and 3DS Max did not have
quaternions integrated into their code [1]. Their advantages over Euler angles, such as
eliminating the problem of gimbal lock and more efficient interpolation of orientation frames,
are a compelling factor in their growing popularity. Computer graphics researchers have
already developed advanced applications of quaternions to orientation frame interpolation.
It will be exciting to see what the future holds for this field that combines computer science
and mathematics.
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